Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Triaqua[2-(carboxylatomethyliminomethyl)-4-formylphenolato- $\kappa^3 O, N, O'$ ]manganese(II) monohydrate

#### Jin-Hua Cai

Department of Chemistry and Life Science, Hechi University Yizhou, Guangxi 546300, People's Republic of China Correspondence e-mail: cjhzse@163.com

Received 2 May 2007; accepted 3 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.100; data-to-parameter ratio = 14.6.

The Mn atom in the title compound,  $[Mn(C_{10}H_7NO_4)-(H_2O)_3]\cdot H_2O$ , adopts an octahedral geometry owing to N,O,O'-tridentate chelation by the planar dianionic ligand. Intermolecular hydrogen bonds form a three-dimensional framework.

#### **Related literature**

For metal complexes of Schiff bases derived from 5-formylsalicylaldehyde, see: Zeng *et al.* (2003); Liu *et al.* (2006); Cai *et al.* (2006*a,b*). For related literature, see: Reddy *et al.* (2004); Wang *et al.* (1999).



#### **Experimental**

#### Crystal data

$$\begin{split} & [\mathrm{Mn}(\mathrm{C}_{10}\mathrm{H}_{7}\mathrm{NO}_{4})(\mathrm{H}_{2}\mathrm{O})_{3}]\cdot\mathrm{H}_{2}\mathrm{O}\\ & M_{r}=332.17\\ & \mathrm{Orthorhombic}, Pbca\\ & a=11.208~(5)~\mathrm{\AA}\\ & b=7.890~(3)~\mathrm{\AA}\\ & c=31.212~(13)~\mathrm{\AA} \end{split}$$

 $V = 2760 (2) Å^{3}$ Z = 8 Mo K\alpha radiation \(\mu = 0.99 \text{ mm}^{-1}\) T = 293 (2) K 0.20 \times 0.15 \times 0.05 \text{ mm}\)  $R_{\rm int} = 0.050$ 

12431 measured reflections

3016 independent reflections

2197 reflections with  $I > 2\sigma(I)$ 

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998)  $T_{\min} = 0.836, T_{\max} = 0.952$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.039$ | H atoms treated by a mixture of                           |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.100$               | independent and constrained                               |
| S = 1.04                        | refinement                                                |
| 2999 reflections                | $\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 205 parameters                  | $\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$  |
| 12 restraints                   |                                                           |

## Table 1 Hydrogen-bond geometry (Å, $^{\circ}$ ).

| $D - H \cdots A$           | D-H                                                                                                                      | $H \cdot \cdot \cdot A$                                               | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|--------------------------------------|
| $O7 - H7A \cdots O3^{i}$   | $\begin{array}{c} 0.836 \ (9) \\ 0.840 \ (9) \\ 0.847 \ (9) \\ 0.843 \ (10) \\ 0.844 \ (10) \\ 0.844 \ (10) \end{array}$ | 1.928 (11)                                                            | 2.758 (3)    | 172 (3)                              |
| $O6 - H6B \cdots O4^{ii}$  |                                                                                                                          | 2.281 (17)                                                            | 3.014 (3)    | 146 (2)                              |
| $O6 - H6A \cdots O4^{i}$   |                                                                                                                          | 1.831 (10)                                                            | 2.677 (3)    | 177 (3)                              |
| $O5 - H5B \cdots O1^{iii}$ |                                                                                                                          | 1.886 (11)                                                            | 2.723 (3)    | 172 (2)                              |
| $O8 - H8B \cdots O2^{iv}$  |                                                                                                                          | 1.997 (13)                                                            | 2.793 (3)    | 157 (3)                              |
| $05 - H5A \cdots 08$       | 0.847(10)                                                                                                                | $\begin{array}{c} 1.833 (10) \\ 1.904 (11) \\ 2.087 (13) \end{array}$ | 2.669 (3)    | 169 (3)                              |
| $07 - H7B \cdots 04^{vi}$  | 0.848(10)                                                                                                                |                                                                       | 2.746 (3)    | 172 (3)                              |
| $08 - H8A \cdots 07$       | 0.843(10)                                                                                                                |                                                                       | 2.900 (3)    | 162 (3)                              |

Symmetry codes: (i)  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (ii)  $x - \frac{1}{2}, y, -z + \frac{1}{2}$ ; (iii)  $-x + \frac{1}{2}, y - \frac{1}{2}, z$ ; (iv) -x + 1, -y + 1, -z + 1; (v) x, y - 1, z; (vi)  $-x + \frac{3}{2}, y + \frac{1}{2}, z$ .

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Ministry of Education Foundation of the Guangxi Chuang Autonomous Region of the People's Republic of China. We also thank Hechi University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2264).

#### References

- Bruker (1998). *SMART* (Version 5.051), *SAINT* (Version 5.01), *SHELXTL* (Version 6.02) and *SADABS* (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, J.-H., Huang, Y.-H. & Jiang, Y.-M. (2006a). Acta Cryst. E62, m2064–m2066.
- Cai, J.-H., Huang, Y.-H. & Jiang, Y.-M. (2006b). Acta Cryst. E62, m2432m2434.
- Liu, X.-H., Cai, J.-H., Jiang, Y.-M., Huang, Y.-H. & Yin, X.-J. (2006). Acta Cryst. E62, m2119–m2121.
- Reddy, P. A. N., Nethaji, M. & Chakravarty, A. R. (2004). Eur. J. Inorg. Chem. pp. 1440–1446.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, R. M., Hao, C. J., Wang, Y. P. & Li, S. B. (1999). J. Mol. Catal. A, 147, 173–178.
- Zeng, J.-L., Jiang, Y.-M. & Yu, K.-B. (2003). Acta Cryst. E59, m1137-m1139.

supplementary materials

Acta Cryst. (2007). E63, m1631 [doi:10.1107/S1600536807021824]

# $\label{eq:carboxylatomethyl} Triaqua[2-(carboxylatomethyl)-4-formylphenolato-\kappa^3O,N,O'] manganese(II) \qquad mono-hydrate$

#### J.-H. Cai

#### Comment

Several crystal structures of metal complexes of salicylaldehyde–amino acids have reported (Wang *et al.*,1999; Reddy *et al.*, 2004). The present study follows studies on the complexes of the Schiff bases derived from 5-formylsalicylaldehyde derivative (Liu *et al.*, 2006; Cai *et al.*, 2006a 2006b).

The title manganese complex (I) is chelated by the 5-formysalicylideneglycinate anion; it is also coordinated by three water molecules. The mononuclear molecule interacts with the lattice water molecule through hydrongen bonds (Table 1) to give rise to a three-dimensional, hydrogen-bonded network.

#### **Experimental**

5-Formylsalicylaldehyde (0.2 mmol, 0.268 g), glycine (0.2 mmol, 0.15 g) and potassium hydroxide (0.2 mmol, 0.112 g) were dissolved in aqueous methanol (80% 15 ml) to give a clear yellow solution. To the solution was added an aqueous solution (10 ml) of nanganese sulfate heptahydrate (1 mmol, 0.28 g). The mixture was heated at 323 K for 2 h. Brown crystals separated from the solution after several days.

#### Refinement

Water H atoms were located in a difference Fourier map and refined with O–H distance restraints of 0.85 (1) Å, and with  $U_{iso}(H) = 1.5U_{eq}(O)$ . Other H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and refined in the riding-model approximation with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### Figures



Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atomnumbering scheme.



Fig. 2. Packing of (I). Hydrogen bonds are shown as dotted lines.

### Triaqua[2-(carboxylatomethyliminomethyl)-4-formylphenolato- $\kappa^3 O, N, O'$ ]manganese(II) monohydrate

 $F_{000} = 1368$ 

 $\lambda = 0.71073 \text{ Å}$ 

 $\theta = 3.2 - 25.8^{\circ}$ 

 $\mu = 0.99 \text{ mm}^{-1}$ T = 293 (2) K

Layer, brown

 $0.20\times0.15\times0.05~mm$ 

 $D_{\rm x} = 1.599 {\rm Mg m}^{-3}$ Mo Kα radiation

Cell parameters from 887 reflections

#### Crystal data

 $[Mn(C_{10}H_7NO_4)(H_2O)_3] \cdot H_2O$  $M_r = 332.17$ Orthorhombic, Pbca Hall symbol: -P 2ac 2ab a = 11.208 (5) Åb = 7.890(3) Å c = 31.212 (13) Å $V = 2760 (2) \text{ Å}^3$ Z = 8

#### Data collection

| Bruker SMART CCD area-detector diffractometer               | 3016 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 2197 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.050$                  |
| T = 293(2)  K                                               | $\theta_{\text{max}} = 27.0^{\circ}$   |
| $\phi$ and $\omega$ scans                                   | $\theta_{\min} = 2.2^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 1998) | $h = -5 \rightarrow 14$                |
| $T_{\min} = 0.836, T_{\max} = 0.952$                        | $k = -9 \rightarrow 10$                |
| 12431 measured reflections                                  | <i>l</i> = −39→38                      |
|                                                             |                                        |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                                |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.039$                        | H atoms treated by a mixture of independent and constrained refinement                              |
| $wR(F^2) = 0.100$                                      | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0509P)^{2} + 0.4197P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| <i>S</i> = 1.04                                        | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                 |
| 2999 reflections                                       | $\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$                                                 |
| 205 parameters                                         | $\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$                                              |
| 12 restraints                                          | Extinction correction: none                                                                         |
| Primary atom site location: structure-invariant direct |                                                                                                     |

methods

|     | x            | У            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|---------------|---------------------------|
| Mn1 | 0.43496 (3)  | 0.08299 (5)  | 0.321939 (11) | 0.02955 (13)              |
| N1  | 0.58315 (17) | 0.0511 (3)   | 0.36816 (6)   | 0.0309 (5)                |
| 01  | 0.36278 (15) | 0.2373 (2)   | 0.37017 (5)   | 0.0396 (4)                |
| 02  | 0.3893 (2)   | 0.4050 (3)   | 0.56880 (7)   | 0.0679 (7)                |
| 03  | 0.56775 (15) | -0.0691 (2)  | 0.28804 (5)   | 0.0370 (4)                |
| O4  | 0.74624 (15) | -0.1884 (3)  | 0.28876 (5)   | 0.0437 (5)                |
| 05  | 0.35268 (18) | -0.1504 (3)  | 0.34151 (8)   | 0.0572 (6)                |
| O6  | 0.2977 (2)   | 0.0909 (3)   | 0.27446 (6)   | 0.0543 (6)                |
| 07  | 0.50884 (16) | 0.3129 (2)   | 0.29047 (5)   | 0.0393 (4)                |
| 08  | 0.5092 (2)   | 0.5967 (3)   | 0.34947 (7)   | 0.0630 (6)                |
| C1  | 0.5816 (2)   | 0.0875 (3)   | 0.40768 (8)   | 0.0343 (6)                |
| H1  | 0.6456       | 0.0493       | 0.4240        | 0.041*                    |
| C2  | 0.4904 (2)   | 0.1827 (3)   | 0.43006 (7)   | 0.0339 (6)                |
| C3  | 0.5064 (2)   | 0.2088 (4)   | 0.47405 (8)   | 0.0412 (6)                |
| H3  | 0.5726       | 0.1604       | 0.4872        | 0.049*                    |
| C4  | 0.4289 (2)   | 0.3029 (4)   | 0.49883 (8)   | 0.0419 (7)                |
| C5  | 0.3320 (3)   | 0.3787 (4)   | 0.47888 (8)   | 0.0458 (7)                |
| Н5  | 0.2802       | 0.4456       | 0.4949        | 0.055*                    |
| C6  | 0.3115 (2)   | 0.3566 (4)   | 0.43600 (9)   | 0.0447 (7)                |
| Н6  | 0.2458       | 0.4089       | 0.4235        | 0.054*                    |
| C7  | 0.3878 (2)   | 0.2563 (3)   | 0.41017 (8)   | 0.0334 (6)                |
| C8  | 0.4519 (3)   | 0.3259 (4)   | 0.54424 (9)   | 0.0512 (8)                |
| H8  | 0.5203       | 0.2758       | 0.5554        | 0.061*                    |
| C9  | 0.6851 (2)   | -0.0454 (3)  | 0.35156 (8)   | 0.0365 (6)                |
| H9A | 0.6995       | -0.1423      | 0.3700        | 0.044*                    |
| H9B | 0.7557       | 0.0256       | 0.3522        | 0.044*                    |
| C10 | 0.6639 (2)   | -0.1067 (3)  | 0.30606 (8)   | 0.0322 (5)                |
| H5A | 0.3944 (18)  | -0.240 (2)   | 0.3436 (9)    | 0.048*                    |
| H5B | 0.2833 (11)  | -0.177 (3)   | 0.3495 (9)    | 0.048*                    |
| H6A | 0.287 (2)    | 0.161 (2)    | 0.2543 (6)    | 0.048*                    |
| H6B | 0.268 (2)    | -0.0012 (18) | 0.2664 (7)    | 0.048*                    |
| H7A | 0.4847 (19)  | 0.338 (4)    | 0.2659 (5)    | 0.048*                    |
| H7B | 0.5840 (9)   | 0.303 (4)    | 0.2890 (8)    | 0.048*                    |
| H8A | 0.498 (3)    | 0.505 (2)    | 0.3363 (7)    | 0.048*                    |
| H8B | 0.527 (3)    | 0.573 (3)    | 0.3750 (4)    | 0.048*                    |
|     |              |              |               |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|-----|-------------|-------------|-------------|--------------|---------------|---------------|
| Mn1 | 0.0266 (2)  | 0.0350 (2)  | 0.0270 (2)  | 0.00148 (16) | -0.00204 (15) | -0.00171 (16) |
| N1  | 0.0250 (10) | 0.0373 (12) | 0.0304 (11) | 0.0034 (9)   | -0.0014 (8)   | -0.0044 (9)   |
| 01  | 0.0365 (10) | 0.0508 (11) | 0.0316 (9)  | 0.0126 (9)   | -0.0046 (7)   | -0.0073 (8)   |
| O2  | 0.0706 (15) | 0.0929 (18) | 0.0402 (12) | 0.0036 (13)  | 0.0077 (11)   | -0.0221 (12)  |
| O3  | 0.0323 (9)  | 0.0491 (11) | 0.0297 (9)  | 0.0066 (8)   | -0.0034 (7)   | -0.0042 (8)   |

## supplementary materials

| O4  | 0.0293 (9)  | 0.0582 (13) | 0.0436 (10) | 0.0083 (9)   | 0.0021 (8)   | -0.0170 (9)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 05  | 0.0363 (11) | 0.0437 (12) | 0.0916 (16) | -0.0060 (10) | 0.0136 (12)  | 0.0115 (11)  |
| 06  | 0.0614 (14) | 0.0505 (13) | 0.0509 (12) | -0.0136 (11) | -0.0297 (10) | 0.0098 (10)  |
| 07  | 0.0332 (10) | 0.0478 (12) | 0.0368 (10) | -0.0038 (9)  | -0.0013 (8)  | 0.0088 (9)   |
| 08  | 0.0815 (17) | 0.0497 (13) | 0.0577 (14) | 0.0077 (12)  | -0.0120 (13) | -0.0068 (11) |
| C1  | 0.0308 (13) | 0.0387 (14) | 0.0334 (13) | 0.0039 (11)  | -0.0066 (10) | -0.0031 (11) |
| C2  | 0.0339 (13) | 0.0374 (14) | 0.0303 (13) | 0.0016 (11)  | 0.0000 (11)  | -0.0047 (11) |
| C3  | 0.0436 (15) | 0.0496 (17) | 0.0305 (13) | 0.0065 (14)  | -0.0049 (11) | -0.0021 (12) |
| C4  | 0.0445 (15) | 0.0485 (17) | 0.0327 (14) | -0.0023 (13) | 0.0037 (12)  | -0.0056 (12) |
| C5  | 0.0405 (15) | 0.0565 (18) | 0.0403 (15) | 0.0018 (14)  | 0.0094 (12)  | -0.0130 (13) |
| C6  | 0.0351 (14) | 0.0521 (17) | 0.0468 (16) | 0.0111 (13)  | 0.0011 (12)  | -0.0100 (13) |
| C7  | 0.0323 (13) | 0.0350 (14) | 0.0328 (13) | -0.0020 (11) | 0.0014 (10)  | -0.0026 (11) |
| C8  | 0.0561 (18) | 0.064 (2)   | 0.0334 (15) | -0.0015 (16) | 0.0039 (13)  | -0.0096 (14) |
| C9  | 0.0294 (13) | 0.0443 (15) | 0.0357 (13) | 0.0062 (12)  | -0.0038 (11) | -0.0061 (11) |
| C10 | 0.0306 (13) | 0.0311 (13) | 0.0347 (13) | -0.0055 (11) | 0.0036 (10)  | -0.0028 (10) |

## Geometric parameters (Å, °)

| Mn1—O1    | 2.0982 (18) | O8—H8A   | 0.843 (10) |
|-----------|-------------|----------|------------|
| Mn1—O6    | 2.1367 (19) | O8—H8B   | 0.844 (10) |
| Mn1—O5    | 2.148 (2)   | C1—C2    | 1.448 (3)  |
| Mn1—O3    | 2.1851 (18) | C1—H1    | 0.9300     |
| Mn1—N1    | 2.215 (2)   | C2—C3    | 1.400 (3)  |
| Mn1—O7    | 2.2227 (19) | C2—C7    | 1.431 (4)  |
| N1-C1     | 1.267 (3)   | C3—C4    | 1.380 (4)  |
| N1—C9     | 1.467 (3)   | С3—Н3    | 0.9300     |
| O1—C7     | 1.288 (3)   | C4—C5    | 1.387 (4)  |
| O2—C8     | 1.213 (4)   | C4—C8    | 1.452 (4)  |
| O3—C10    | 1.252 (3)   | C5—C6    | 1.369 (4)  |
| O4—C10    | 1.249 (3)   | С5—Н5    | 0.9300     |
| O5—H5A    | 0.847 (10)  | C6—C7    | 1.417 (4)  |
| O5—H5B    | 0.843 (10)  | С6—Н6    | 0.9300     |
| O6—H6A    | 0.847 (9)   | C8—H8    | 0.9300     |
| O6—H6B    | 0.840 (9)   | C9—C10   | 1.519 (3)  |
| O7—H7A    | 0.836 (9)   | С9—Н9А   | 0.9700     |
| O7—H7B    | 0.848 (10)  | С9—Н9В   | 0.9700     |
| O1—Mn1—O6 | 101.72 (9)  | C2—C1—H1 | 116.7      |
| O1—Mn1—O5 | 97.34 (9)   | C3—C2—C7 | 118.0 (2)  |
| O6—Mn1—O5 | 85.02 (9)   | C3—C2—C1 | 117.3 (2)  |
| O1—Mn1—O3 | 158.23 (6)  | C7—C2—C1 | 124.7 (2)  |
| O6—Mn1—O3 | 99.81 (8)   | C4—C3—C2 | 123.2 (3)  |
| O5—Mn1—O3 | 87.67 (8)   | С4—С3—Н3 | 118.4      |
| O1—Mn1—N1 | 83.55 (7)   | С2—С3—Н3 | 118.4      |
| O6—Mn1—N1 | 174.32 (8)  | C3—C4—C5 | 118.3 (2)  |
| O5—Mn1—N1 | 92.25 (9)   | C3—C4—C8 | 120.1 (3)  |
| O3—Mn1—N1 | 75.06 (7)   | C5—C4—C8 | 121.6 (3)  |
| O1—Mn1—O7 | 89.27 (8)   | C6—C5—C4 | 121.0 (3)  |
| O6—Mn1—O7 | 86.44 (8)   | С6—С5—Н5 | 119.5      |
| O5—Mn1—O7 | 170.11 (8)  | C4—C5—H5 | 119.5      |

| O3—Mn1—O7  | 88.87 (7)   | C5—C6—C7   | 121.8 (3)   |
|------------|-------------|------------|-------------|
| N1—Mn1—O7  | 95.81 (7)   | С5—С6—Н6   | 119.1       |
| C1—N1—C9   | 118.2 (2)   | С7—С6—Н6   | 119.1       |
| C1—N1—Mn1  | 126.74 (17) | O1—C7—C6   | 119.0 (2)   |
| C9—N1—Mn1  | 114.38 (14) | O1—C7—C2   | 123.2 (2)   |
| C7—O1—Mn1  | 132.77 (16) | C6—C7—C2   | 117.7 (2)   |
| C10—O3—Mn1 | 119.94 (16) | O2—C8—C4   | 125.3 (3)   |
| Mn1—O5—H5A | 119.8 (17)  | O2—C8—H8   | 117.3       |
| Mn1—O5—H5B | 133.8 (17)  | C4—C8—H8   | 117.3       |
| H5A—O5—H5B | 106.4 (15)  | N1-C9-C10  | 111.97 (19) |
| Mn1—O6—H6A | 129.7 (17)  | N1-C9-H9A  | 109.2       |
| Mn1—O6—H6B | 118.2 (17)  | С10—С9—Н9А | 109.2       |
| H6A—O6—H6B | 106.6 (14)  | N1—C9—H9B  | 109.2       |
| Mn1—O7—H7A | 119 (2)     | С10—С9—Н9В | 109.2       |
| Mn1—O7—H7B | 108.5 (19)  | Н9А—С9—Н9В | 107.9       |
| H7A—O7—H7B | 107.1 (15)  | O4—C10—O3  | 124.4 (2)   |
| H8A—O8—H8B | 107.6 (15)  | O4—C10—C9  | 117.0 (2)   |
| N1—C1—C2   | 126.7 (2)   | O3—C10—C9  | 118.6 (2)   |
| N1—C1—H1   | 116.7       |            |             |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                          | <i>D</i> —Н                                   | $H \cdots A$             | $D \cdots A$          | D—H···A                                       |
|----------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|-----------------------|-----------------------------------------------|
| O7—H7A···O3 <sup>i</sup>                                                         | 0.836 (9)                                     | 1.928 (11)               | 2.758 (3)             | 172 (3)                                       |
| O6—H6B···O4 <sup>ii</sup>                                                        | 0.840 (9)                                     | 2.281 (17)               | 3.014 (3)             | 146 (2)                                       |
| O6—H6A···O4 <sup>i</sup>                                                         | 0.847 (9)                                     | 1.831 (10)               | 2.677 (3)             | 177 (3)                                       |
| O5—H5B···O1 <sup>iii</sup>                                                       | 0.843 (10)                                    | 1.886 (11)               | 2.723 (3)             | 172 (2)                                       |
| O8—H8B····O2 <sup>iv</sup>                                                       | 0.844 (10)                                    | 1.997 (13)               | 2.793 (3)             | 157 (3)                                       |
| O5—H5A···O8 <sup>v</sup>                                                         | 0.847 (10)                                    | 1.833 (10)               | 2.669 (3)             | 169 (3)                                       |
| O7—H7B····O4 <sup>vi</sup>                                                       | 0.848 (10)                                    | 1.904 (11)               | 2.746 (3)             | 172 (3)                                       |
| O8—H8A…O7                                                                        | 0.843 (10)                                    | 2.087 (13)               | 2.900 (3)             | 162 (3)                                       |
| Symmetry codes: (i) $-x+1$ , $y+1/2$ , $-z+1/2$ ; (ii) $x-1/2$ , $y+1/2$ , $z$ . | <i>y</i> , <i>-z</i> +1/2; (iii) <i>-x</i> +1 | /2, y-1/2, z; (iv) $-x+$ | 1, -y+1, -z+1; (v) x, | <i>y</i> -1, <i>z</i> ; (vi) - <i>x</i> +3/2, |







Fig. 2